Available online at www.sciencedirect.com
ScienceDirect

Vaccine 25 (2007) 4273-4282

%beeiﬂe

www.elsevier.com/locate/vaccine

Protection with recombinant Clostridium botulinum C1 and D binding
domain subunit (Hc) vaccines against C and D neurotoxins

Robert P. Webb?, Theresa J. Smith?, Patrick M. Wright?, Vicki A. Montgomery ?,
Michael M. Meagher®, Leonard A. Smith®*

& Integrated Toxicology Division, United States Army Medical Research Institute for Infectious Diseases,
1425 Porter Street, Frederick, MD 21702, United States
Y Biological Process Development Facility, Department of Chemical and Biomolecular Engineering,
University of Nebraska-Lincoln, Lincoln, NE 68588, United States

Received 13 December 2006; received in revised form 21 February 2007; accepted 21 February 2007
Available online 16 March 2007

Abstract

Recombinant botulinum He (rBoNT Hc) vaccines for serotypes C1 and D were produced in the yeast Pichia pastoris and used to determine
protection against four distinct BONT C and D toxin subtypes. Mice were vaccinated with rBoNT/C1 Hc, rBoNT/D Hc, or with a combination
of both vaccines and challenged with BoNT C1, D, C/D, or D/C toxin. Mice receiving monovalent vaccinations were partially or completely
protected against homologous toxin and not protected against heterologous toxin. Bivalent vaccine candidates completely survived challenges
from all toxins except D/C toxin. These results indicate the recombinant C1 and D Hc vaccines are not only effective in a monovalent formula
but offer complete protection against both parental and C/D mosaic toxin and partial protection against D/C mosaic toxin when delivered as

a bivalent vaccine.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Botulism is the collective term for the neurophysiologi-
cal effects caused by clostridial neurotoxins. There are seven
serologically unique types of Clostridium botulinum neu-
rotoxins, denoted BoNT A-G, that consist of a 150-kDa
holotoxin with an N-terminal 50-kDa light chain (LC) and
a C-terminal 100-kDa heavy chain (HC), linked by a single
disulfide bond [1]. The BoNT HC is further delineated into
the N-fragment, or translocation domain (Hn), and the C-
fragment, or receptor-binding domain (Hc), forming three
functional domains that mediate intoxication of the neu-
ron in a defined pathway. The toxin is initially introduced
into cholinergic nerve cells by receptor-mediated endocyto-
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sis involving the interaction of the Hc domain with specific
receptors [2]. The acidic pH of the endosome is believed
to initiate a conformational change in the dichain toxin that
results in the formation of a protein channel by the Hn through
which the LC is translocated out of the endosomal lumen and
into the cytosol [3]. The LC is a zinc-dependent, endoprotease
that cleaves SNARE proteins which are critical for vesicu-
lar trafficking and release of neurotransmitter at cholinergic
synapses [2].

Because of the relatively high amino acid sequence het-
erogeneity of 32-60% of the neurotoxins, little, if any,
cross-protection is seen among the serotypes, necessitating
the development of vaccines against each individual serotype.
BoNT Cl1 and D strains are unique among the neurotoxins
in that their toxin genes are carried on bacteriophages [4].
This may contribute to the relative mobility of their toxic
components and the diversity seen in C and D neurotoxin
sequences.
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BoNT C1 toxin was shown to produce a blockade of
neuromuscular transmission in human pyramidalis neuro-
muscular junction preparations under identical experimental
conditions as BONT A toxin [5], and to inhibit exocytosis in
cerebellar granule neurons over multiple weeks (BoNT C1 —
13 pM inhibits for >25 days; BONT A — 10 pM inhibits for >31
days) [6]. BoNT C/D is currently being used to treat dystonia
in humans [7]. Both BoNT C1 and BoNT D/C were lethal by
aerosol to nonhuman primates [J. Anderson, personal com-
munication]. This information taken together supports the
belief that BoNT C and D, and their mosaic counterparts, may
be potentially lethal in humans. We have been developing
recombinant vaccines against BoNT believed to be potential
bioterrorist or biowarfare threats.

On rare occasions BoNT C toxin or C. botulinum type
C organisms have been associated with cases of foodborne
botulism. Two cases of foodborne botulism linked to BoNT
C and one case of infant botulism attributed to C. botulinum
serotype C1 have been reported [8,9], and BoNT D organisms
were found in tainted ham that caused mild botulism in sev-
eral persons [9]. However, BONT C1 and D are predominantly
known for causing avian or mammalian botulism [10-12].
Limited stocks of anti-BoNT C1 and D veterinary vaccines
are used to vaccinate cattle and other domestic animals, and
they have been shown to be protective. For example, in a
recent outbreak in foxes and minks in Finland, vaccinated
animals showed a 1.5% overall death rate, where unvacci-
nated susceptible foxes had death rates of approximately 25%
[12].

BoNT CI from strains Stockholm and 468 share 99.9%
nucleic acid identity [13,14]. Similarly, BONT D from strains
1873 and CB-16 also share 99.9% DNA sequence iden-
tity [15,16]. However, as neurotoxins from more individual
strains of BoNT C and D were characterized, some dis-
played an inconsistent reactivity to BoNT C and D antitoxins
[17-20]. Initial serological data suggested that the bacteria
might be encoding both BONT C and D but DNA sequencing
revealed the existence of mosaics that contain elements of
both C and D holotoxins [21,22]. BoNT from strain C6813
(a C/D mosaic) has the sequence of BoNT C1 for the amino-
terminal 2/3 of the protein (95% identity), but is 95% identical
to BoNT D in the carboxy-terminal third [21]. Similarly,
when the bacteriophage from the South African strain of
BoNT D (Dsa) was sequenced, the LC was found to have
a very high amino acid identity with BoNT/D LC (96%) and
Hn (92%), but shared only 78% and 40% identity with the
BoNT/C1 and /D Hc, respectively [22]. The sequence diver-
gence observed in the receptor-binding domain of the BONT
Dsa (a D/C mosaic) appears to be unique among the BoNT
toxins.

This dual antigenic nature of the C and D mosaic tox-
ins presents obvious challenges to developing prophylactic
treatments, including recombinant Hc subunit vaccines. Fur-
thermore, D/C mosaic toxins present an even more unique
problem due to amino acid sequence variation in the Hc that
diverges significantly from either of the parental holotoxins.

In this study, mice were vaccinated with rBoNT/C1 Hc
and rBoNT/D Hc, in monovalent and bivalent formulations,
to compare protection against homologous and mosaic toxin
strains with each vaccine, and with both vaccines in combi-
nation.

2. Materials and Methods

2.1. Construction of rBoNT Hc genes and
transformation in Pichia pastoris

2.1.1. rBoNT/CI Hc

A synthetic rBoNT/Cl Hc gene encoding amino
acid residues Thr-843 to Glu-1291 (NCBI accession #
BAA14235) was constructed using a P. pastoris alcohol oxi-
dase 1 (AOX1I) codon bias. N-terminal residues were chosen
for stability consistent with the N-end rule governing pro-
tein expression in yeast. [23] (Fig. 1A). The rBoNT/Cl
Hc open reading frame (ORF) was ligated into the EcoRI
site of yeast expression vector pHILD4 (Philips Petroleum,
Bartlesville, Oklahoma) and the plasmid construct was lin-
earized with Sacl and introduced into the methylotropic yeast,
P. pastoris GS115, by spheroplast transformation according
to the manufacturer’s specifications (Invitrogen, Carlsbad,
CA). Recombinant yeast strains containing multiple copies
of the insert DNA were selected by screening on yeast
extract peptone dextrose (YPD) plates containing increas-
ing amounts of G418 (geneticin sulfate). Despite the care
taken in gene construction, the resulting protein from this
construct was found to be truncated by 22 amino acids.
Repeated attempts to produce full-length protein by adjust-
ments in fermentation and purification parameters failed, so
a new synthetic rBoNT/C1 Hc gene beginning at amino
acid residue 22 of the original construct was made. The
new construct, encoding amino acid residues Tyr-865 to
Glu-1291 of rBoNT/CI1, was ligated into the EcoRI site
of yeast expression vector pPICZA (Invitrogen, Carlsbad,
CA). The plasmid construct was linearized with Sacl and
transformed into P. pastoris X-33. Clones with multi-copy
inserts were selected on increasing amounts of Zeocin and
confirmed by southern blot and a five-copy clone was
selected based on performance under fermentation condi-
tions.

2.1.2. rBoNT/D Hc

Similarly, a synthetic rBoNT/D Hc gene encoding
amino acid residues Ala-830 to Glu-1276 (NCBI acces-
sion #BAA75084) was constructed using AOX! codon bias
favoring yeast-stable N-terminal amino acids (Fig. 1B). The
rBoNT/D Hc ORF was ligated into the EcoRlI site of pPICZB
(Invitrogen). The rBoNT/D Hc gene construct was linearized
with Sacl and introduced into yeast P. pastoris strain X-33 by
electroporation. Recombinant yeast strains containing multi-
copy inserts were selected on YPD plates with 800, 1000,
and 1500 mg/1 of Zeocin.
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N-terminus of new synthetic construct

M T I P F N I F S Y TNDN S L L KD I I NE Y F
GAATTCACGATGACCATCCCATTCAACATCTTCTCCTACACCAACAACTCCCTGTTGAAGGACATCATCAACGAGTACTTC
N N I ND S K I L 8L QDNUZ RI KUNTTLUVDTSGYNATE
AACAACATCAACGACTCCAAGATCCTGTCCCTGCAGAACCGTAAGAACACCTTGGTCGACACCTCCGGTTACAACGCCGAG
vV S EE G DV QL NUPTIFUPTFUDTFEKTILTGS S S GETDTR G
GTCTCCGAGGAGGGTGACGTCCAGCTGAACCCAATCTTCCCATTCGACTTCAAGCTGGGTTCCTCCGGTGAGGACAGAGGT
K v I Vv T Q N ENTI V Y NS M YES SV FSTI S F W TIRI
AAGGTCATCGTCACCCAGAACGAGAACATCGTCTACAACTCCATGTACGAGTCCTTCTCCATCTCCTTCTGGATCAGAATC
N KWV S8 NLP G Y TTI I DSV KDNUNZS SGWSTIGTII
AACAAGTGGGTCTCCAACTTGCCAGGTTACACCATCATCGACTCCGTCARGAACAACTCCGGTTGGTCCATCGGTATCATC
§ N F L VF TULE KU QNTETDTSET QSTINTFEFZSZYDTISNN
TCCAACTTCCTGGTCTTCACCCTGAAGCAGAACGAGGACTCCGAGCAGTCCATCAACTTCTCCTACGACATCTCCAACAAC
A P G Y N KWV F F V TVTDNUNMMMGUNMZEKTITZYTING®GK
GCTCCTGGTTACAACAAGTGGTTCTTCGTCACCGTCACCAACAACATGATGGGTAACATGAAGATCTACATCAACGGTAAG
L I DT I X V KETULTGTINTFSZ XKTTITT FTETINTZKTIP
CTGATCGACACCATCAAGGTCAAGGAGTTGACCGGTATCAACTTCTCCAAGACCATCACCTTCGAGATCAACAAGATCCCA
D TG UL I T SD SDUNTINMM®W®WWTIU RUDTE EFTYTITFA AT KTETLD
GACACCGGTCTGATCACCTCCGACTCCGACAACATCAACATGTGGATCCGTGACTTCTACATCTTCGCCAAGGAGTTGGAC
¢G KD IWNTITILTFINGSTILAOQYTTNUVV VKT DTYUWGNTDTLR Y
GGTAAGGACATCAACATCCTGTTCAACTCCTTGCAGTACACCAACGTCGTCAAGGACTACTGGGGTAACGACCTGAGATAC
N K E Y Y M V N I DY L NRUYMVYANZSERIOQTIVFNT
AACAAGGAGTACTACATGGTCAACATCGACTACTTGAACAGATACATGTACGCCAACTCCAGACAGATCGTCTTCAACACT
R RNDNINUDTFDNETGTYEKTITITIZ KU RTIIRSGNTNTUDTRYV
AGACGTAACAACAACGACTTCAACGAGGCTTACAAGATCATCATCAAGCCTATCAGAGGTARCACCAACGACACCAGAGTC
R ¢ G D I L Y FDMTTINUNIKI ATYUNTILTFMTIEKINTETMY
AGAGGTGGTGACATCCTGTACTTCGACATGACTATCAACAACAAGGCCTACAACCTGTTCATGAAGAACGAGACCATGTAC
A D NHSTETDTIU YA ATIGTLTZ RTETZG QTTE KT DTIUNTUDINTITITF
GCCGACAACCACTCCACCGAGGACATCTACGCCATCGGTCTGCGTGAGCAGACCAAGGACATCAACGACAACATCATCTTC
Q I Q PMNDNT Y Y Y A S Q I F KSNFUNGTENTITS G
CAGATCCAGCCAATGAACAACACTTACTACTACGCTTCCCAGATCTTCAAGTCCAACTTCAACGGTGAGAACATCTCCGGT
I ¢ 8 I 6T Y R FRULGGT DT WJY®RUHNTYTLUVEPETV KOQ
ATCTGTTCCATCGGTACCTACAGATTCCGTCTGGGTGGTGACTGGTACAGACACARCTACTTGGTTCCAACTGTCAAGCAG

G N YA SULULEZSTSTUHWGT FV PV 8§ E * =
GGTAACTACGCCTCCTTGCTGCAGTCCACTTCCACCCACTGGGEATTCGTCCCAGTCTCCGAGTAATAGGAATTC

M A K V N E S F ENTMU®PF NI F 8 Y T NN S8 L
GAATTCACGATGGCTAAGGTCAACGAGTCCTTCGAGAACACCATGCCATTCAACATCTTCTCCTACACCAACRACTCCTTG
N-terminus of protein
\

L K D I I N E Y F N S I NDS K I L S L Q N K KN AL
TTGAAGGACATCATCAACGAGTACTTCAACTCCATCAACGACTCCAAGATCTTGTCCTTGCAGAACAAGAAGAACGCCTTG
v DT $ G ¥ NAEV RVY G DNV QLDNTTIVYTNTDF K
GTCGACACCTCCGGTTACAACGCCGAGGTCAGAGTCGGTGACAACGTCCAGTTGARCACCATCTACACCARCGACTTCARG
L §$ §$ §$ G b XK I I VN L NUDNUNTIIULY S AIYENSSV
TTGTCCTCTTCCGGTGACAAGATCATCGTCAACTTGAACAACAACATCTTGTACTCCGCCATCTACGAGAACTCCTCTGTC
S F W I K I S KDILTNSHWDNEYTTITIDNSTIEQN S
TCCTTCTGGATCAAGATCTCCAAGGACTTGACCAACTCCCACAACGAGTACACCATCATCAACTCCATCGAGCAGAACTCC
G W KL CTIRDNGNTIEWTIULUGOU DUV DNRIEKYK S L I F
GGTTGGAAGTTGTGTATCCGTARCGGTAACATCGAGTGGATCTTGCAGGACGTCARCCGTAAGTACAAGTCCTTGATCTTC
D ¥ §sS E s L s HTGJY TN KW FF VTTITWNWNTIMGY
GACTACTCCGAGTCCTTGTCCCACACCGGTTACACCARCAAGTGGTTCTTCGTCACCATCACCARCARCATCATGGGTTAC
M K L ¥ I N G E L K 8 ¢Q K I E DULUDEV KL DI KT I
ATGAAGTTGTACATCAACGGTGAGTTGAAGCAGTCCCAGAAGATCGAGGACCTGGACGAGGTCAAGCTGGACAAGACCATC
vV F 6 I bDENIDEWNA QMTLWWTIU®RUDTFWNTITFSKETL S
GTCTTCGGTATCGACGAGAACATCGACGAGAACCAGATGTTGTGGATTCGTGACTTCAACATCTTCTCCARGGAGCTGTCC
N E D I N I VY E G Q I L RN V I KDY WGNUPTUL K F
AACGAGGACATCAACATCGTCTACGAGGGTCAGATCCTGAGGAACGTCATCAAGGACTACTGGGGTAACCCACTGAAGTTC
D T E ¥ ¥ I I N DN Y I DRY I A PE SNV L VL V Q
GACACCGAGTACTACATCATCAACGACAACTACATCGACCGTTACATCGCCCCAGAGTCCAACGTCCTGGTCCTGGTCCAG
Y P D L 8§ KL ¥ TGWNUPTITTII K S V S D KNUP Y S R I
TACCCTGACCTGTCCAAGCTGTACACCGGTAACCCTATCACCATCARGTCCGTCTCCGACAARGARCCCTTACTCCCGTATC
L NG DN I I L HM L ¥ N S R K Y M I I R D TD T I Y
CTGAACGGTGACAACATCATCCTGCACATGCTGTACAACTCCCGTAAGTACATGATCATCCGTGACACCGACACCATCTAC
A T Q G G ECS QNOCV Y AL KIULSOQSDNULGW NYG I G
GCCACCCAGGGTGGTGAGTGTTCCCAGAACTGTGTCTACGCCCTGAAGCTGCAGTCCAACCTGGGTAACTACGGTATCGGT
I F 8 I K N I V S KN K Y C S 0 I F S8 S8 F RENTMIL
ATCTTCTCCATCAAGAACATCGTCTCCAAGAACAAGTACTGCTCCCAGATCTTCTCCTCCTTCCGTGAGAACACCATGCTG
L A DI Y K P WRF S F KNAYTU®PUV AV TNYE T K
CTGGCCGACATCTACAAGCCTTGGCGTTTCTCCTTCARGAACGCCTACACTCCTGTCGCCGTCACCAACTACGAGACCAAG

L L 8 T s 8 F W K PF I 8 R D P G W V E * =*
CTGCTGTCCACCTCCTCCTTCTGGAAGTTCATCTCCCGTGACCCAGGTTGGCGTCGAGTAATAGGAATTC

4275

Fig. 1. Synthetic open reading frames (ORF) of the rBoNT/C1 Hc (A) and BoNT/D Hc (B) utilizing a P. pastoris AOXI codon bias. The EcoRlI restriction sites
are italicized, the core Kozak sequence is underlined.
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2.2. Protein expression and purification

2.2.1. rBoNT/CI Hc

Fermentations were performed as described elsewhere
[24]. Purifications were done using a three-step process. The
first step involved loading extract from the cell pellet, in
50 mM sodium phosphate, 2M NaCl, pH 6.5, onto a MEP
HyperCel column (Pall Corp., East Hills, NY) followed by
multiple washes in succinate buffers of decreasing pH and
elution using a gradient of various percentages of 50 mM
succinate, pH 4.5 and 25 mM succinate, pH 3.0. The second
step included a CM 650 M (weak anion exchange) column
(Applied Biosystems, Foster City, CA), with initial loading
and washing in 25 mM succinate, 650 mM NacCl, pH 4.0.
Material was eluted from the column using a salt gradient
of 650 mM-1M NaCl in succinate, pH 4.0. The final step
included a second MEP HyperCel column, with elution using
a decreasing salt gradient from 500 to 300 mM NacCl, plus a
decrease in pH from 4.0 to slightly above 3.0. This puri-
fied material was diafiltered into 15 mM succinate, pH 4.0,
and analyzed by SDS-PAGE, Western blot, and N-terminal
sequencing.

2.2.2. rBoNT/D Hc

Selected recombinant strains of P. pastoris were cultured
in minimal glycerol medium (MGY) at 30 °C until an opti-
cal density of 2-3 at 600nm (ODgpo) was attained and
then switched to minimal medium containing 0.5% methanol
(MM) to induce expression.

A clear extract produced from frozen P. pastoris pellet har-
boring the target protein was loaded onto a column containing
Phenyl Sepharose 650 M resin (TOSOH BioSciences, Mont-
gomeryville, PA) equilibrated with 20 mM sodium acetate
(NaOAc), pH 6.2, 2M NaCl, 2mM EDTA, 1M PMSEF. The
rBoNT/D Hc was eluted with a decreasing salt gradient using
20 mM NaOAc pH 6.2, 2 mM EDTA, 1 mM PMSF as Buffer
B. Fractions containing rBoNT/D Hc were pooled and dia-
lyzed against 3 changes of 20 mM NaOAc, pH 5.2, 2mM
EDTA, 1 mM PMSF for 3 h. Dialyzed fractions were loaded
onto a cation exchange column containing POROS HS20
resin (Applied Biosystems, Foster City, CA) which had been
pre-equilibrated with 20 mM NaOAc, pH 5.2, 2mM EDTA,
1 mM PMSE. Protein was eluted with an increasing salt gra-
dient using 20mM NaOAc, pH 5.2, 2mM EDTA, 0.5M
NaCl as the second buffer. Fractions containing rBoNT/D
Hc were pooled and analyzed by SDS-PAGE, Western blot,
and N-terminal sequencing.

2.3. Challenge studies

2.3.1. Challenge toxins

Neurotoxins used in ELISA and challenge studies were
obtained from the following strains: BoONT C1 NCTC 8264
(Centers for Applied Microbiology Research (CAMR) Por-
ton Down, UK); BoNT C/D 003-9 and BoNT D CB-16
(Wako Chemicals, Richmond, VA); and BoNT D/C VPI 5995

(Metabiologics, Madison, WI). BoNT C1 was available only
as pure neurotoxin; BoNT C/D and D only as toxin complex;
and BoNT D/C was available both in pure and complexed
form.

Specific activity of the toxins was determined in mice by
duplicate intraperitoneal (i.p.) LDsg endpoint titrations, using
two-fold dilutions ranging from 20 to 0.156 LD5g, based on
preliminary lethality values received from the manufactur-
ers. Published neurotoxin gene sequences were available for
three of the four toxins used in this study. Sequences for toxin
subtypes BoNT C1 Stockholm, BoNT C/D 003-9, and BoNT
D CB-16 are available from PubMed (# D90210, AB200360,
and S49407, respectively). The sequence for BoONT D/C VPI
5995 was provided by Karen Hill, Los Alamos National
Laboratories. This gene sequence has been deposited into
the NCBI database as accession number EF378947. Align-
ments and identity comparisons of BoNT genes and proteins
were generated using Vector NTI Suite software (Invitrogen,
Carlsbad, CA) (Fig. 2).

2.3.2. Vaccinations

Female Crl:CD-1 mice (Charles River, Raleigh, NC) were
received at approximately 5 weeks of age. Antigen stocks of
rBoNT/C1 Hc and rBoNT/D Hc were diluted to 50 pg/ml
in 25 mM sodium succinate, 15 mM sodium phosphate, pH
5.0, with 5% mannitol with 0.2% Alhydrogel as adjuvant.
Groups of 10 mice were vaccinated intramuscularly (i.m.)
at 0, 4, and 8 weeks with 5 g of either rBoNT/C1 Hc,
rBoNT/D Hc, or a combination of 5 g each of both anti-
gens in a total volume of 0.1 ml. Two weeks after the final
vaccination, mice were challenged i.p. with 100,000 mouse
LDs in total injected volumes of 0.1 ml of the appropriate
toxin. All challenge toxins were in complexed form except
BoNT C1, which was pure neurotoxin. Statistical analyses
on survival rate were done using Fisher Exact tests. Animal
studies were conducted in compliance with the Animal Wel-
fare Act and other federal statutes and regulations relating
to animals and experiments involving animals and adhere to
principles stated in the Guide for the Care and Use of Labora-
tory Animals, National Research Council, 1996. The facility
where this research was conducted is fully accredited by the
Association for Assessment and Accreditation of Laboratory
Animal Care International.

2.3.3. Potency assays

Potency assays were done as previously described [1].
Briefly, groups of 10 mice were vaccinated once with
three-fold decreasing amounts of antigen from 8.1 pg to
11ng using 0.2% Alhydrogel as adjuvant. Vaccinations
were i.m., 0.1 ml total dose. Three weeks after vaccination,
mice were challenged i.p. with 1000 LDsy of appropri-
ate toxin in total volumes of 0.1 ml. Toxins were all in
complexed form, except BoNT CI1, which was pure neu-
rotoxin. Survival was monitored over 5 days, and results
were tallied and subjected to probit analysis (SPSS, Chicago,
Illinois).
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Fig. 2. Amino acid alignments of BONTC, BoNT C/D, BoNT D/C and BoNT D showing mosaic nature of the C/D and D/C toxins. BoNT C sequences are

red, BONT D sequences are blue, conserved sequences are black with yellow highlighting, and sequences unique to BoNT D/C are green.
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2.3.4. Mouse serum ELISA titers

Mice were bled 2 days prior to challenge to obtain serum
for individual serum ELISA titers. Sera were tested in dupli-
cate for reactivity against the same toxin type used for
the mouse challenge. Ninety-six well microtiter plates were
coated with toxins diluted to 2 pg/ml and incubated overnight
at 4°C. The toxins used to coat the plates were the com-
plexed form of BoNT D and C/D or pure neurotoxin from
types C1 and D/C. Skim milk diluent (5% skim milk in PBS,
pH 7.4) was used to block nonspecific binding and as an anti-
body diluent. Plates were washed with PBS (pH 7.4) with
0.1% Tween-20 between steps. Test sera were initially diluted
1:100, followed by four-fold serial dilutions for a total of eight
dilutions (1:100-1: 1,638,400), and incubated for 90 min at
37°C. Goat anti-mouse antibody conjugated to horseradish
peroxidase (KPL, Gaithersburg, MD), diluted 1:1000, was
added as the secondary antibody, and incubated for 60 min
at 37 °C. Plates were developed for 30 min at room temper-
ature with 2, 2'-azino-di (3-ethylbenzthiazoline-6-sulfonate)
(ABTS) (KPL, Gaithersburg, MD) and absorbance was read
at 405nm. The titer was defined as the reciprocal of the
highest dilution with an absorbance >0.2 above background.
Geometric means of the ELISA titers were generated to show
overall comparisons in antibody development to each toxin
subtype. Statistical analyses on geometric means were done
using ANOVA with Tukey’s post-hoc tests for comparisons
between non-controls and Dunnett’s post-hoc tests for com-
parisons to controls. Additional ELISAs comparing results
using pure versus complexed BoNT D/C toxin were done
(data not shown). Results were similar, regardless of toxin
state.

3. Results
3.1. ¥ BoNT/C1 Hc purification

While our original rBoNT/C1 Hc construct was designed
specifically to produce stable full-length protein, the final
product was found to contain truncations. The predomi-
nant protein species purified was 426 amino acid residues,
representing a 22 amino acid deletion. The N-terminus of
the protein consistently began with YFNNINDSKI. Modi-
fications in fermentation and purification failed to produce
full-length protein, and, as a homogeneous vaccine product
is desirable and studies indicated that the additional 22 amino
acid residues removed were not necessary for immunogenic-
ity of the product, a new gene construct was made beginning
atamino acid residue 865. The three-step purification scheme
included initial capture using MEP HyperCel, followed by a
weak anion exchange step that removed the majority of higher
molecular weight Pichia proteins, and final removal of con-
taminants and any rBoNT/C1 Hc degradation products with
arepeat of MEP HyperCel. Diafiltration was used to raise the
pH and reduce the conductivity of the product. The final prod-
uct had a concentration of 320 g/ml and was >98% pure by
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Fig. 3. SDS-PAGE of purified BONT/C1 Hc and BoNT/D Hc. Lanes 1 and
4: molecular weight markers, lane 2-5 pg of rBoNT/C1 Hc, lane 3-5 g of
rBoNT/D Hc.

visual inspection of an SDS-PAGE (Fig. 3) and Western blot
(Fig. 4). Sequencing indicated the N-terminus of the protein
was intact.

3.2. ¥BoNT/D Hc purification

The rBoNT/D Hc protein product was >95% pure, with
a final concentration of 306 wg/ml. SDS-PAGE and West-
ern blot analyses showed single bands of expected molecular
weight. (Figs. 3 and 4). N-terminal sequencing of the purified
D Hc vaccine revealed 95% of the purified polypeptide began
with the sequence Y FN SIN D S K I, which represented a
rBoNT/D Hc species lacking the first 31 amino acid residues
from the expected N-terminus. Thus, the final rBoNT/D Hc
protein consisted of 415 amino acid residues, from Tyr 861-
Glu 1276. Care was taken to engineer the genes for these

BoNT/C He BoNT/D He
98 kDa —»
52kDa —* —
31kba —»

1 2 3 4

Fig. 4. Western blot of purified BONT/C1 Hc and BoNT/D Hc. Lanes 1 and
3: molecular weight markers, lane 2: BONT/C1 Hc, lane 4: purified BONT/D
He.
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recombinant proteins to express full-length proteins, but, as
with the rBoNT/C1 Hc protein, the rBoNT/D Hc showed a
distinct but stable truncation.

3.3. Vaccination and challenge with BoNT C and D
toxin subtypes

Mice receiving three vaccinations of 5 g per mouse of
either rBoNT/C1 Hc, rBoNT/D Hc, or a bivalent vaccine con-
taining both antigens were challenged with 100,000 mouse
LDso of appropriate toxin. Survival results are presented
in Table 1. Mice were challenged with BoNT C1 (NCTC
8264), BoNT C/D (003-9), BoNT D (CB-16), and BoNT D/C
(VPI 5995) toxins. Neurotoxin from the VPI 5995 strain was
thought to be type D, but previous studies showed that the
toxin was not effectively neutralized by anti-D antitoxin and
neurotoxin sequencing confirmed this toxin to be type D/C.
Survival against challenges with BoNT C1 toxin after vacci-
nation with rBoNT/C1 Hc or rBoNT/C1+D Hc was complete
and partial survival was seen after challenge with BoNT D/C
toxin. Complete survival was seen against challenges of either
BoNT D or C/D toxin after vaccination with rBoNT/D Hc or
rBoNT/C1+D Hc. Survival against D/C toxin was partial after
vaccination with rBoNT/C1 Hc or rBoNT/C1+D Hc (3—4/10
mice).

Potency assays using BoNT/C1 and /D Hc against homol-
ogous toxin show good protection, with EDsg values of
109 ng (95% confidence limits = 54-208 ng) and 232 ng (95%
confidence limits = 105-501 ng), respectively, after only one
vaccination (Fig. 5). No mice survived challenge after vacci-
nation with BoNT/D Hc and challenge with BoNT D/C toxin.
As the efficacy results after three vaccinations with BoNT/
C1 Hc at 5 pg/mouse and challenge with BoNT C/D toxin
showed no survival, it was deemed unnecessary to run a one-
dose potency assay using that vaccine-toxin combination.

3.4. Mouse serum ELISA results

Serum antibody titers were determined using individual
serum ELISAs for each mouse against their challenge toxin.
Geometric means of the titers are shown in Table 1 and Fig. 6.
Mice vaccinated with rBoNT Hc antigen homologous to the
challenge toxin Hc sequence developed the highest average
titers, ranging from 67,559 to 819,200, with the exception of
BoNT/D/C. In contrast, serum from mice vaccinated with
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Fig. 5. Results from one-dose potency assays showing protection against
homologous toxins. EDsq values for BONT /C1 Hc vs. BoNT C toxin and
rBoNT/D Hc vs. BoNT D toxin are 109 ng and 232 ng, respectively. There
were no survivors when BoNT/D Hc-vaccinated mice were challenged with
BoNT D/C toxin.
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Fig. 6. Serum responses in mice following vaccination with rBoNT/C1 Hc,
rBoNT/D Hc, or a combination of C1 and D Hc vaccines. Mouse sera were
tested individually by ELISA where the antigens were the same subtype as
the challenge toxins for those animals. Geometric means of the titers were
generated for comparative purposes. Error bars represent the mean+2 S.D.

rBoNT Hc heterologous to the Hc of the challenge toxin
developed substantially lower titers ranging from 100 to 919.
ELISA titers where BONT D/C was used as coating toxin
were 673 for rBoNT/D Hc-vaccinated mice, and only 14,703
and 16,890 for rBoNT/C1 or rBoNT/C1+D Hc-vaccinated
mice, respectively. Overall differences in geometric mean
ELISA titers were analyzed using ANOVA. As expected with

Table 1
Survival data and geometric means of mouse serum ELISA titers

C NCTC 8264 C/D 003-9 D/C VPI 5995 D CBI16

Challenge ELISA Challenge ELISA Challenge ELISA Challenge ELISA
C (He) 10/10 819,200 0/10 303 4/10 14,703 0/10 100
D (He) 0/10 919 10/10 470,507 0/10 673 10/10 310,419
C (He)+D (He) 10/10 270,235 10/10 67,559 3/10 16,890 10/10 102,400
toxin controls 0/10 <100 0/10 <100 0/10 <100 0/10 <100

Mice were immunized 3 times at 0, 4, and 8 weeks with 5 ug per mouse of rBoNT/C1 Hc, rBoNT D Hc, or both antigens. Two weeks following final
immunization, mice were challenged with 100,000 LDs of listed toxin. Challenge numbers represent number of survivors/total number of mice in group.
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the monovalent formulations, highly significant differences
(»<0.0001) were seen when comparing high versus low
titers. However, differences when comparing high with high
or low with low were not significant (p =0.5056-0.9828),
with the exception of mice vaccinated with rBoNT Hc where
sera was tested against D/C toxin. Sequence differences
between BoNT C and D/C in the Hc region were sufficient
to lower antibody binding to significantly different levels
(»<0.0001). The BoNT D/C Hc region contains approx-
imately 23% unique sequence that differs from any other
serotype, including C1 and D. Thus, we would expect sig-
nificant differences in ELISA titer after bivalent vaccination
when comparing BoNT C, C/D, or D versus BoNT D/C toxin.
Titers against BoNT C, C/D, or D ranged from 67,559 to
270,235 but averaged only 16,890 against BONT D/C. These
were significantly different levels (p <0.0001-0.0354). In
addition, differences between titers using C toxin versus C/D
toxin were significant (p =0.0354), but not when compar-
ing C versus D or D versus C/D. These analyses indicate
that rBoNT/C1 Hc is not a significantly better immunogen
than rBoNT/D Hc, and that both antigens in combina-
tion are significantly less immunogenic against C/D mosaic
toxins.

4. Discussion

There are currently no licensed vaccines for the preven-
tion of botulism. Limited quantities of a pentavalent toxoid
vaccine granted Investigational New Drug status in 1979 are
available for individuals at risk of exposure. However, due
to the difficulties and risks associated with producing tox-
oid vaccines [25] subsequent efforts have largely focused on
recombinant vaccines for prophylaxis [26-29]. We have pre-
viously demonstrated that recombinant rBoNT Hc vaccines
are highly efficacious, protecting against challenges of over
100,000 LD5 of toxin, often after a single vaccination [30].

However, botulinum neurotoxins are known to be diverse
[31,32], with multiple subtypes that present distinct chal-
lenges in designing effective prophylactic and therapeutic
molecules. While some toxin subtypes differ by as much as
32%, only the C and D serotypes show specific mosaic pat-
terns, which make protection after vaccination particularly
challenging. An additional problem with these serotypes has
been the marketing of serotype C/D as serotype C, and of
serotype D/C as serotype D. Problems relating to vaccine
protection against BONT D led us to pursue additional stud-
ies with this toxin, including gene sequencing. As a result,
we discovered the subtype discrepancy with BoNT D/C VPI
5995 (from Metabiologics), and verified the subtype of C/D
003-9 (from Wako). Previously, these subtypes were deter-
mined to be serotypes D and C solely on immunological
information, and since there is some cross-reactivity, even
between serotype C1 and serotype D, this has led to confusion
as to their true nature. An example of this confusion may be
seen in the conflicting reports of cellular toxicity with BONT

C1, which could be due to use of C1 in some experiments
and C/D in others [33,34].

To date, all sequenced BoNT C or D strains have shown
remarkable conservation to either the standard or mosaic
toxins. However, the numbers of published sequences are
limited to about 13 BoNT C or C/D strains, and 6 BoNT D
and D/C strains. These strains are from Japan, South Africa,
Taiwan, and Europe, with only a very few sequences are rep-
resented from any specific geographic region. It is possible
that as more BoNT C and D strains are sequenced, additional
sequence diversity may be seen in these serotypes.

Catastrophic outbreaks of botulism in domestic animals,
birds [35,36] and farmed fur animals [12] have had severe
environmental and economic impacts. A survey of the litera-
ture reveals numerous case studies of botulism outbreaks in
cattle, sheep, and goats, where herd losses from 30—-77% have
been recorded. Losses have been especially hard in South
America, Africa, and Australia, where vaccination against
BoNT C and D is encouraged. Veterinary use of rBoNT/Cl1
and /D vaccines could prevent such outbreaks in the future.

Woodward et al. [37] reported that recombinant
polyhistidine-tagged rBoNT/C1 and /D Hc antigens pro-
duced in E. coli were used to inoculate mice as both monova-
lent and bivalent vaccines. Vaccinations of 10 wg rBoNT/Cl1
and /D Hc delivered i.p. at 0 and 2 weeks provided 40% and
60% protection against 100,000 LD5g of BONT C1 and BONT
D. The bivalent formula conferred 100% and 40% protec-
tion against 1000 LDsq challenge with BoNT C1 and BoNT
D, respectively. While there was little or no cross protection
observed in the monovalent vaccines, mice given the bivalent
vaccine survived the BoNT Cl1 challenge and a subsequent
challenge of 1000 LDsp of BoNT D. In a separate study,
approximately 10 g of rBoNT/C1 and /D HC expressed as
glutathione-S-transferase fusion proteins in E. coli were used
to inoculate mice at 0 and 3 weeks [38] The HC vaccines com-
pletely protected mice from challenge with 100,000 LD5q of
the homologous toxins. No bivalent formulations were inves-
tigated in this study. Additionally, the Woodward study did
not list the challenge toxin strains used, and the Arimitsu
study did not test their vaccines against mosaic strains.

Our rBoNT/C1 and /D Hc vaccines were composed of
synthetic genes designed for optimal full-length expression
in P. pastoris. Surprisingly, both recombinant proteins were
cleaved at the same conserved E/Y site (see Fig. 1A and
B) by an unidentified protease. The predominant proteolytic
product was shown to be stable, despite the inclusion of
two significant N-terminal destabilizing amino acids [23].
The relative stability of these recombinant proteins is unex-
plained but might be attributed to the N-terminal region
being sequestered within the recombinant protein, making
it unavailable for subsequent degradation.

Results indicate our monovalent rBoNT/C1 and /D Hc
vaccines are effective against homologous toxins, and the
bivalent formulation can significantly protect against BONT
C1, D and both mosaic toxins. Complete protection was
seen after vaccination with vaccines containing similar Hc
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sequences as the challenge toxins. Mice vaccinated with
rBoNT/C1 Hc were completely protected against BoONT Cl1
and partially protected against BONT D/C toxins; mice vac-
cinated with rBoNT/D Hc were completely protected against
BoNT C/D and D toxins. Mice vaccinated with the combi-
nation rBoNT/C+D Hc vaccine were completely protected
against all C and D toxin subtypes except the BoNT D/C
toxin.

Serum ELISA titers reflected survival results. Vaccination
with bivalent vaccine resulted in a less robust ELISA titer yet
offered the same level of protection against a toxin challenge
as the monovalent formulations. While the ELISA titers and
survival in the mosaic BONT D/C-challenged animals appears
due primarily to protection from the rBoNT C1 Hc vaccine,
the relatively poor ELISA titers and survival rates observed
are most likely due to the significant sequence divergence
between BoNT D/C, C1 and D observed in the Hc region
(Fig. 2). The Hc of this toxin differs by 23% from the BoNT
C1 sequence and by 63% from the BoNT D sequence. The
antibodies derived from the rBoNT/C1 and /D Hc antigens
that do not contain this unique sequence would most likely
have a reduced efficacy in neutralizing the D/C mosaic toxin.

One dose potency assays were done with BoNT/C1 Hc
vaccination and challenge with BoNT Cl1 toxin, and with
BoNT/D Hc vaccination followed by challenge with either
BoNT D or D/C toxin. While the EDsy for BoNT/C1 Hc-
BoNT C toxin was 114ng, and the EDs5o for BoNT/D
Hc-BoNT D toxin was 232 ng, there were no survivors when
BoNT/D Hc vaccinated mice were challenged with BoNT
D/C toxin. The EDsq results after challenge with homolo-
gous toxin are within the range of EDsgs of other rBoNT Hc
vaccines (89-250ng) [1], indicating that equivalent effective
protection is seen with all rBoNT Hc vaccines. The potency
assays also showed that no effective protection can be gained
after single vaccination with rBoNT/D Hc and challenge
with mosaic D/C toxin. Woodward et al. indicated that pro-
tection might also be limited after two vaccinations. Three
vaccinations with our rBoNT /C1 and/D Hc vaccines are time-
consuming but effective. These results show our rBoNT/C1
Hc and /D Hc vaccines to be effective against challenge with
homologous toxin after single vaccination, but effective pro-
tection against heterologous may require a minimum of three
vaccinations.

Recombinant BoNT Hc vaccines are known to be highly
protective against homologous toxins. This report illustrates
their effectiveness in monovalent and bivalent formulations
against diverse toxin subtypes.
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